Una investigación intercultural sobre la aceptación de las personas de la tecnología Smart Home: el papel de la satisfacción de las necesidades


  • Neil Daruwala Universitat Ramon Llull
  • Ursula Oberst Ramon Llull University



Palabras clave:

Technology Acceptance Model; Self Determination Theory; Needs satisfaction; Smart Home Technology; Behavioural Intention to use .


Los fabricantes de la tecnología hogar inteligente actualmente afrontan problemas importantes con la aceptación y la intención de usar sus productos. La evidencia sugiere que los productos específicos tienen la mayor parte del mercado de hogares inteligentes, y todavía es inusual experimentar una configuración de hogar inteligente completamente integrada. Este estudio tuvo como objetivo investigar la aceptación de la tecnología de casa inteligente utilizando el Modelo de Aceptación de Tecnología y la Teoría de la Autodeterminación con una muestra de usuarios de la tecnología de casa inteligente ingleses (N = 284) y españoles (N = 209). Predijimos que la facilidad de uso y las utilidades percibidas actuarían como mediadores del efecto de la satisfacción de la necesidad en la intención de comportamiento de los encuestados para usar la tecnología hogar inteligente. Excepto por la satisfacción de la relación, no hubo efectos de género; sin embargo, encontramos diferencias importantes entre los participantes británicos y españoles, que se discuten en términos de diferencias culturales en el grado en que la satisfacción de necesidades es importante para los participantes.


Aburagaga, I., Agoyi, M., & Elgedawy, I. (2020). Assessing faculty’s use of social network tools in Libyan higher education via a technology acceptance model. IEEE Access, 8, 116415–116430. https://doi.org/10.1109/access.2020.3004200

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human

Decision processes, 50, 179-211.

Balta-Ozkan, N., Davidson, R., Bicket, M., & Whitmarsh, L. (2013). Social barriers to the adoption of Smart Homes. Energy Policy, 63, 363–374. https://doi.org/10.1016/j.enpol.2013.08.043

Barnhart, B. (2022). Social media demographics to inform your Brand's strategy in 2022. Sprout Social. https://sproutsocial.com/insights/new-social-media-demographics/

Bartholomew, K. J., Ntoumanis, N., Ryan, R. M., Bosch, J. A., & Thøgersen-Ntoumani, C. (2011). Self-determination theory and diminished functioning. Personality and Social Psychology Bulletin, 37(11), 1459–1473. https://doi.org/10.1177/0146167211413125

Beugelsdijk, S., Kostova, T., & Roth, K. (2016). An overview of Hofstede-inspired country-level culture research in international business since 2006. Journal of International Business Studies, 48(1), 30–47. https://doi.org/10.1057/s41267-016-0038-8

Brynjolfsson, E., Horton, J., Ozimek, A., Rock, D., Sharma, G., & TuYe, H.-Y. (2020). Covid-19 and remote work: An early look at US data. National Bureau of Economic Research. https://doi.org/10.3386/w27344

Calvo, R. A., Peters, D., Vold, K., & Ryan, R. M. (2020). Supporting human autonomy in AI systems: A Framework for Ethical Enquiry. Ethics of Digital Well-Being.Philosophical Studies Series, 140. https://doi.org/10.1007/978-3-030-50585-1_2

Chen, B., Vansteenkiste, M., Beyers, W., Boone, L., Deci, E. L., Van der Kaap-Deeder, J., Duriez, B., Lens, W., Matos, L., Mouratidis, A., Ryan, R. M., Sheldon, K. M., Soenens, B., Van Petegem, S., & Verstuyf, J. (2014). Basic psychological need satisfaction, need frustration, and need strength across four cultures. Motivation and Emotion, 39(2), 216–236. https://doi.org/10.1007/s11031-014-9450-1

Chepurna, M., & Criado, J. R. (2021). What motivates and deters users’ online co-creation? The role of cultural and socio-demographic factors. Spanish Journal of Marketing - ESIC, 25(2), 258–279. https://doi.org/10.1108/SJME-10-2020-0176

Chirkov, V., Ryan, R. M., Kim, Y., & Kaplan, U. (2003). Differentiating autonomy from individualism and independence: A self-determination theory perspective on internalization of cultural orientations and well-being. Journal of Personality and Social Psychology, 84, 97–110.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. doi:10.2307/249008

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003.

de Boer, D., Limpens, G., Rifin, A., & Kusnadi, N. (2019). Inclusive productive value chains, an overview of Indonesia’s cocoa industry. Journal of Agribusiness in Developing and Emerging Economies, 9(5), 439–456. https://doi.org/10.1108/jadee-09-2018-0131

Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of Research in Personality, 19(2), 109-134. doi:10.1016/0092-6566(85)90023-6

Dixon, S. (2022). U.S. instagram reach by gender 2021. Statista. https://www.statista.com/statistics/246195/share-of-us-internet-users-who-use-instagram-by-gender/

Fathali, S., & Okada, T. (2018). Technology acceptance model in technology-enhanced OCLL contexts: A self-determination theory approach. Australasian Journal of Educational Technology, 34(4). https://doi.org/10.14742/ajet.3629

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.

Garcia, F., Serra, E., Garcia, O., Martinez, I., & Cruise, E. (2019). A third emerging stage for the current Digital Society? optimal parenting styles in Spain, the United States, Germany, and Brazil. International Journal of Environmental Research and Public Health, 16(13), 2333. https://doi.org/10.3390/ijerph16132333

Gomez-Lumbreras, A., Ferrer, P., Ballarín, E., Sabaté, M., Vidal, X., Andretta, M., Coma, A., & Ibáñez, L. (2019). Study of antidepressant use in 5 European settings. could economic, sociodemographic and cultural determinants be related to their use? Journal of Affective Disorders, 249, 278–285. https://doi.org/10.1016/j.jad.2019.01.039

Gram-Hanssen, K., & Darby, S. J. (2018). “Home is where the smart is”? Evaluating smart home research and approaches against the concept of home. Energy Research & Social Science, 37, 94-101. doi:10.1016/j.erss.2017.09.037

Hargreaves, T., & Wilson, C. (2017). Introduction: Smart Homes and Their Users. Human–Computer Interaction Series Smart Homes and Their Users, 1-14. https://doi:10.1007/978-3-319-68018-7_1

Hew, T. S., & Kadir, S. L. (2016). Predicting the acceptance of cloud-based virtual learning environment: The roles of Self Determination and Channel Expansion Theory. https://doi.org/10.1016/j.tele.2016.01.004

Higueras-Castillo, E., Liébana-Cabanillas, F. J., Muñoz-Leiva, F., & Molinillo, S. (2019). The role of collectivism in modeling the adoption of renewable energies: A cross-cultural approach. International Journal of Environmental Science and Technology, 16(4), 2143–2160. https://doi.org/10.1007/s13762-019-02235-4

Hofstede, G. (2011). Dimensionalizing cultures: The Hofstede model in context. Online Readings in Psychology and Culture, 2(1). https://doi.org/10.9707/2307-0919.1014

Huang, Y. C., Backman, K. F., Backman, S. J., & Chang, L. L. (2015). Exploring the implications of Virtual Reality Technology in tourism marketing: An integrated research framework. International Journal of Tourism Research, 18(2), 116–128. https://doi.org/10.1002/jtr.2038

Hubert, M., Blut, M., Brock, C., Zhang, R. W., Koch, V., & Riedl, R. (2019). The influence of acceptance and adoption drivers on smart home usage. European Journal of Marketing, 53(6), 1073–1098. https://doi.org/10.1108/ejm-12-2016-0794

Joo, Y. J., Park, S., & Lim, E. (2018). Factors Influencing Preservice Teachers’ Intention to Use Technology: TPACK, Teacher Self-efficacy, and Technology Acceptance Model. Journal of Educational Technology & Society, 21(3), 48–59. http://www.jstor.org/stable/26458506

Khan, I. U., Hameed, Z., Yu, Y., Islam, T., Sheikh, Z., & Khan, S. U. (2017). Predicting the acceptance of MOOCs in a developing country: Application of task-technology fit model, social motivation, and self-determination theory. Telematics and Informatics, 35(4), 964-978. http://dx.doi.org/10.1016/j.tele.2017.09.009

Khasawneh, O. Y. (2018). Technophobia: Examining its hidden factors and defining it. Technology in Society, 54, 93–100. https://doi.org/10.1016/j.techsoc.2018.03.008

Kidd, C. D., Orr, R., Abowd, G. D., Atkeson, C. G., Essa, I. A., MacIntyre, B., Mynatt, E., Starner, T. E., & Newstetter, W. (1999). The Aware Home: A Living Laboratory for Ubiquitous Computing Research. Cooperative Buildings. Integrating Information, Organizations, and Architecture, 191–198. https://doi.org/10.1007/10705432_17

Kim, M. J., Cho, M. E., & Jun, H. J. (2020). Developing Design Solutions for Smart Homes Through User-Centered Scenarios. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.00335

Kim, Y., Park, Y., & Choi, J. (2017). A study on the adoption of IOT Smart Home Service: Using value-based adoption model. Total Quality Management & Business Excellence, 28(9-10), 1149–1165. https://doi.org/10.1080/14783363.2017.1310708

King, W. R., & He, J. (2006). A meta-analysis of the Technology Acceptance Model. Information & Management, 43(6), 740–755. https://doi.org/10.1016/j.im.2006.05.003

Kuebel, H., & Zarnekow, R. (2015). Exploring platform adoption in the smart home case. ICIS 2015 Proceedings.15. https://doi.org/https://aisel.aisnet.org/icis2015/proceedings/ITimplementation/15

Kuvaas, B. (2009). A test of hypotheses derived from self‐determination theory among public sector employees. Employee Relations, 31(1),39-56. https://doi.org/10.1108/01425450910916814

Lee, S.-G., Trimi, S., & Kim, C. (2013). The impact of cultural differences on technology adoption. Journal of World Business, 48, 20–29.

Lee, Y., Lee, J., & Hwang, Y. (2015). Relating motivation to information and communication technology acceptance: Self-Determination Theory Perspective. Computers in Human Behavior, 51, 418–428. https://doi.org/10.1016/j.chb.2015.05.021

Liu, A.-C., & Chou, T.-Y. (2020). An integrated technology acceptance model to approach the behavioural intention of smart home appliance. International Journal of Organizational Innovation,13(2).

Longo, Y., Gunz, A., Curtis, G. J., & Farsides, T. (2016). Measuring need satisfaction and frustration in educational and work contexts: The need satisfaction and frustration scale (NSFS). Journal of Happiness Studies, 17(1), 295–317. https://doi.org/10.1007/s10902-014-9595-3

Lopatovska, I., & Williams, H. (2018). Personification of the Amazon alexa. Proceedings of the 2018 Conference on Human Information Interaction & Retrieval - CHIIR '18. https://doi.org/10.1145/3176349.3176868

Lopez-Fernandez, O., Williams, A. J., & Kuss, D. J. (2019). Measuring female gaming: Gamer profile, predictors, prevalence, and characteristics from psychological and gender perspectives. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00898

Lu, Y., Papagiannidis, S., & Alamanos, E. (2019). Exploring the emotional antecedents and outcomes of technology acceptance. Computers in Human Behavior, 90, 153–169. https://doi.org/10.1016/j. chb.2018.08.056.

Maalsen, S., & Dowling, R. (2020). Covid-19 and the accelerating smart home. Big Data & Society, 7(2), 205395172093807. https://doi.org/10.1177/2053951720938073

Mamonov, S., & Benbunan-Fich, R. (2020). Unlocking the smart home: Exploring key factors affecting the smart lock adoption intention. Information Technology & People, 34(2), 835–861. https://doi.org/10.1108/itp-07-2019-0357

Marikyan, D., Papagiannidis, S., & Alamanos, E. (2020). Cognitive dissonance in technology adoption: A Study of Smart Home Users. Information Systems Frontiers. https://doi.org/10.1007/s10796-020-10042-3

Marikyan, D., Papagiannidis, S., & Alamanos, E. (2021). “Smart Home Sweet Smart Home.” International Journal of E-Business Research, 17(2), 1–23. https://doi.org/10.4018/ijebr.2021040101

Martínez-Córcoles, M., Teichmann, M., & Murdvee, M. (2017). Assessing technophobia and technophilia: Development and validation of a questionnaire. Technology in Society, 51, 183–188. https://doi.org/10.1016/j.techsoc.2017.09.007

McElroy, E., Whittaker, M., & Fried, G. (2021, August 27). Covid-19 crisis capitalism comes to real estate. Boston Review. https://bostonreview.net/articles/erin-mcelroy-meredith-whittaker-genevieve-fried-covid-19-and-tech/

Mital, M., Chang, V., Choudhary, P., Papa, A., & Pani, A. K. (2018). Adoption of Internet of Things in India: A test of competing models using a structured equation modeling approach. Technological Forecasting and Social Change, 136, 339–346. https://doi.org/10.1016/j.techfore.2017.03.001

Moon, J.-W., & Kim, Y.-G. (2001). Extending the tam for a world-wide-web context. Information & Management, 38(4), 217–230. https://doi.org/10.1016/s0378-7206(00)00061-6

Mordor Intelligence. (2021). Smart home Market (2021 - 26): Industry Trends, Size, Share: Covid - 19 IMPACT. Mordor Intelligence. https://www.mordorintelligence.com/industry-reports/global-smart-homes-market-industry

Neumann, N. (2018). The acceptance of smart home technology. 11th IBA Bachelor Thesis Conference.

Niemiec, C. P., & Ryan, R. M. (2009). Autonomy, competence, and relatedness in the classroom: Applying self-determination theory to educational practice. School Field, 7(2), 133-144.

Nikou, S. (2019). Factors driving the adoption of smart home technology: An empirical assessment. Telematics and Informatics, 45, 101283. https://doi.org/10.1016/j.tele.2019.101283

Nikou, S. A., & Economides, A. A. (2017). Mobile-Based Assessment: Integrating acceptance and motivational factors into a combined model of Self-Determination Theory and Technology Acceptance. Computers in Human Behavior, 68, 83-95. http://dx.doi.org/10.1016/j.chb.2016.11.020

Office for National Statistics. (2017, December 19). Young people spend a third of their leisure time on devices. Young people spend a third of their leisure time on devices - Office for National Statistics. https://www.ons.gov.uk/peoplepopulationandcommunity/leisureandtourism/articles/youngpeoplespendathirdoftheirleisuretimeondevices/2017-12-19.

Park, E., Cho, Y., Han, J., & Kwon, S. J. (2017). Comprehensive Approaches to User Acceptance of Internet of Things in a Smart Home Environment. IEEE Internet of Things Journal, 4(6), 2342–2350. https://doi.org/10.1109/jiot.2017.2750765

Paulhus, D. L., & Vazire, S. (2007). The self-report method. In R. W. Robins, R. C. Fraley, & R. F. Krueger (Eds.), Handbook of research methods in personality psychology (pp. 224–239). The Guilford Press.

Pedrotti, M., & Nistor, N. (2016). User Motivation and Technology Acceptance in Online Learning Environments. Adaptive and Adaptable Learning, 472–477. https://doi.org/10.1007/978-3-319-45153-4_45

Perrin, A. (2015). Social Media Usage: 2005-2015. Pew Research Center: Internet, Science & Tech. https://www.pewresearch.org/internet/2015/10/08/social-networking-usage-2005-2015/.

Peters, D., Calvo, R. A., & Ryan, R. M. (2018). Designing for Motivation, Engagement and Wellbeing in Digital Experience. Frontiers in Psychology, 9. doi:10.3389/fpsyg.2018.00797

Powell, R. M. (2015). Symptoms after exposure to smart meter radiation. https://stopsmartmetersau.files.wordpress.com/2015/03/symptoms-after-exposure-to-smart-meter-radiation.pdf.

Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717–731. https://doi.org/10.3758/bf03206553

Racero, F. J., Bueno, S., & Gallego, M. D. (2020). Predicting Students’ Behavioral Intention to Use Open Source Software: A Combined View of the Technology Acceptance Model and Self-Determination Theory. Applied Sciences, 10(8), 2711. https://doi.org/10.3390/app10082711

Research and Markets (2020, July 24). $135.3 Billion Worldwide Smart Home Industry to 2025 - Featuring Schneider Electric, United Technologies & Amazon Among Others - ResearchAndMarkets.com. Business Wire. https://www.businesswire.com/news/home/20200724005173/en/135.3-Billion-Worldwide-Smart-Home-Industry-to-2025---Featuring-Schneider-Electric-United-Technologies-Amazon-Among-Others---ResearchAndMarkets.com.

Ricquebourg, V., Menga, D., Durand, D., Marhic, B., Delahoche, L., & Loge, C. (2006). The Smart Home Concept : our immediate future. 2006 1ST IEEE International Conference on E-Learning in Industrial Electronics. https://doi.org/10.1109/icelie.2006.347206

Rideout, V. J., Foehr, U. G., & Roberts, D. F. (2010). Generation M2: Media in the Lives of 8- to 18-Year-Olds. Henry J. Kaiser Family Foundation.

Roca, J. C., & Gagné, M. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior, 24(4), 1585–1604. https://doi.org/10.1016/j.chb.2007.06.001

Rode, J. A., & Poole, E. S. (2018). Putting the gender back in Digital Housekeeping. Proceedings of the 4th Conference on Gender & IT - GenderIT '18. https://doi.org/10.1145/3196839.3196845

Rosli, M. S., & Saleh, N. S. (2022). Technology enhanced learning acceptance among university students during covid-19: Integrating the full spectrum of self-determination theory and self-efficacy into the technology acceptance model. Current Psychology. https://doi.org/10.1007/s12144-022-02996-1

Ruiz, E. (2020). The 'smart community' trend is growing across the nation. KMGH. https://www.thedenverchannel.com/news/national/the-smart-community-trend-is-growing-across-the-nation

Ryan, R. M., & Deci, E. L. (2000a). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. https://doi.org/10.1037/0003-066x.55.1.68

Ryan, R. M., & Deci, E. L. (2000). When rewards compete with nature. Intrinsic and Extrinsic Motivation, 13–54. https://doi.org/10.1016/b978-012619070-0/50024-6

Ryan, R. M., & Deci, E. L. (2017). Self-determination theory: Basic psychological needs in motivation, development, and wellness. The Guilford Press. https://doi.org/10.1521/978.14625/28806

Ryan, R. M., & Deci, E. L. (2019). Brick by brick: The origins, development, and future of self-determination theory. Advances in Motivation Science, 6,111–156. https://doi.org/10.1016/ bs.adms.2019.01.001.

Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61, 101860. https://doi.org/10.1016/j.cedpsych.2020. 101860.

Schill, M., Godefroit-Winkel, D., Diallo, M. F., & Barbarossa, C. (2019). Consumers' intentions to purchase smart home objects: Do environmental issues matter? Ecological Economics, 161, 176-185. https://doi.org/10.1016/j.ecolecon.2019.03.028

Sekar, A., Williams, E., & Chen, R. (2018). Changes in time use and their effect on energy consumption in the United States. Joule, 2(3), 521–536. https://doi.org/10.1016/j.joule.2018.01.003

Sharma, S., Singh, G., Sharma, R., Jones, P., Kraus, S., & Dwivedi, Y. K. (2021). Digital Health Innovation: Exploring adoption of covid-19 digital contact tracing apps. IEEE Transactions on Engineering Management, 1–17. https://doi.org/10.1109/tem.2020.3019033

Shuhaiber, A., & Mashal, I. (2019). Understanding users’ acceptance of smart homes. Technology in Society, 58, 101110. https://doi.org/10.1016/j.techsoc.2019.01.003

Shuhaiber, A., Mashal, I., & Alsaryrah, O. (2019). Smart Homes as an IoT Application: Predicting Attitudes and Behaviours. 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA). https://doi.org/10.1109/aiccsa47632.2019.9035295

Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing Artificial Intelligence-based intelligent products. Telematics and Informatics, 47, 101324. https://doi.org/10.1016/j.tele.2019.101324

Sørebø, Ø., Halvari, H., Gulli, V. F., & Kristiansen, R. (2009). The role of self-determination theory in explaining teachers’ motivation to continue to use e-learning technology. Computers & Education, 53(4), 1177-1187.

Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., & Markakis, E. K. (2020). A Survey on the Internet of Things (IoT) Forensics: Challenges, Approaches, and Open Issues. IEEE Communications Surveys & Tutorials, 22(2), 1191-1221. doi:10.1109/comst.2019.2962586

Strengers, Y., Kennedy, J., Arcari, P., Nicholls, L., & Gregg, M. (2019). Protection, productivity and pleasure in the smart home. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3290605.3300875

Tóth‐Király, I., Bőthe, B., Márki, A. N., Rigó, A., & Orosz, G. (2019). Two sides of the same coin: The differentiating role of need satisfaction and frustration in passion for screen‐based activities. European Journal of Social Psychology, 49(6), 1190–1205. https://doi.org/10.1002/ejsp.2588

Trajkova, M., & Martin-Hammond, A. (2020). "Alexa is a toy": Exploring older adults' reasons for using, limiting, and abandoning Echo. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3313831.3376760

Tsai, T. H., Chang, Y. S., Chang, H. T., & Lin, Y. W. (2021). Running on a social exercise platform: Applying self-determination theory to increase motivation to participate in a sporting event. Computers in Human Behavior, 114, 106523. https://doi.org/10.1016/j. chb.2020.106523.

Tschofen, C., & Mackness, J. (2012). Connectivism and dimensions of individual experience. The International Review of Research in Open and Distributed Learning, 13(1), 124-143.

Tung, F., Chang, S., & Chou, C. (2008). An extension of trust and TAM model with IDT in the adoption of the Electronic Logistics Information System in his in the medical industry. International Journal of Medical Informatics, 77(5), 324–335. https://doi.org/10.1016/j.ijmedinf.2007.06.006

Turner, M., Kitchenham, B., Brereton, P., Charters, S., & Budgen, D. (2010). Does the technology acceptance model predict actual use? A systematic literature review. Information and Software Technology, 52(5), 463–479. https://doi.org/10.1016/j.infsof.2009.11.005

Van Hung, T., Ngoc Phuong Thao, T., Nguyen Thi Kieu, T., & Quang Hien, D. (2021). Research on factors influencing intention to use Smart home devices in Danang. 2021 21st ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). https://doi.org/10.1109/snpdwinter52325.2021.00052

Vansteenkiste, M., & Ryan, R. M. (2013). On psychological growth and vulnerability: Basic psychological need satisfaction and need frustration as a unifying principle. Journal of Psychotherapy Integration, 23(3), 263–280. https://doi.org/10.1037/a0032359

Venkatesh, V. (1999). Creation of favorable user perceptions: Exploring the role of intrinsic motivation. MIS Quarterly, 23(2), 239. https://doi.org/10.2307/249753

Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. http://www.jstor.org/stable/41410412

Wang, Q. (2016). Why Should We All Be Cultural Psychologists? Lessons from the Study of Social Cognition. Perspectives on Psychological Science, 11(5), 583–596. https://doi.org/10.1177/1745691616645552

Wang, X., McGill, T. J., & Klobas, J. E. (2018). I Want It Anyway: Consumer Perceptions of Smart Home Devices. Journal of Computer Information Systems, 60(5), 437–447. https://doi.org/10.1080/08874417.2018.1528486

Wilson, C., Hargreaves, T., & Hauxwell-Baldwin, R. (2017). Benefits and risks of smart home technologies. Energy Policy, 103, 72-83. doi:10.1016/j.enpol.2016.12.047

Winnicka, A., Kęsik, K., Połap, D., Woźniak, M., & Marszałek, Z. (2019). A multi-agent gamification system for managing Smart Homes. Sensors, 19(5), 1249. https://doi.org/10.3390/s19051249

Wright, D., Shank, D. B., & Yarbrough, T. (2021). Outcomes of training in Smart Home Technology adoption. Communication Design Quarterly, 9(3), 14–26. https://doi.org/10.1145/3468859.3468861

Yang, H., Lee, H., & Zo, H. (2017). User acceptance of smart home services: An extension of the theory of planned behavior. Industrial Management & Data Systems, 117(1), 68–89. https://doi.org/10.1108/imds-01-2016-0017

Yang, H., Lee, W., & Lee, H. (2018). IoT Smart Home Adoption: The Importance of Proper Level Automation. Journal of Sensors, 2018, 1–11. https://doi.org/10.1155/2018/6464036

Yokoi, T. (2021). Female gamers are on the rise. can the gaming industry catch up? Forbes. https://www.forbes.com/sites/tomokoyokoi/2021/03/04/female-gamers-are-on-the-rise-can-the-gaming-industry-catch-up/

Yoon, C., & Rolland, E. (2012). Knowledge-sharing in virtual communities: Familiarity, anonymity and self-determination theory. Behaviour & Information Technology, 31(11), 1133–1143. https://doi.org/10.1080/0144929x.2012.702355.